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Summary

Two experiments were conducted to examine whether acute (one-hour) or chronic exertional fatigue
(3-7 days) would impair the thermoregulatory response during subsequent cold exposure thereby leading to
an accentuated core temperature reduction compared to when the same individual was exposed to cold in a
rested condition. In Study 1, ten men rested for 2 hours during a standardized cold air test (CAT, 4.6°C)
following 2 treatments: 1) 60 min of cycle exercise (EX) at 55% V0 2 peak and 2) passive heating (HEAT).
EX was performed during a 35°C water immersion (WI) and HEAT was conducted during a 38.2°C WI. The
duration of HEAT was individually adjusted (mean = 53 min) so that rectal temperature (Tre) was similar at
the end of WI in both EX (38.2°C) and HEAT (38.1°C). During CAT following EX, relative to HEAT: 1)
Tre was lower (P < 0.05) from min 40-120, 2) mean weighted heat flow was higher (P < 0.05), 3) insulation
was lower (P < 0.05), and 4) metabolic heat production was not different. In Study 2, thirteen men (10
experimental and 3 Control subjects) performed a cold-wet walk (CW) for up to 6-h (6 rest-work cycles,
each cycle one h in duration) in 5°C air on three occasions. One cycle of CW consisted of 10 min standing
in the rain (5.4 cm'hr') followed by 45 min walking (1.34 m's-1, 5.4 m's-' wind). Clothing was saturated at
the start of each walking period (0.75 clo vs. 1.1 clo when dry). The initial CW trial (Day 0, DO) was
performed (afternoon) with subjects rested before initiating exercise-cold exposure. During the next 7 days,
4-h of exhaustive exercise (aerobic, anaerobic, resistive) was performed each morning. The subsequent two
CW trials were performed on the afternoon of days 3 (D3) and 7 (D7), - 2.5-h after the cessation of fatiguing
exercise. For the Control group, no exhaustive exercise was performed on any day. Thermoregulatory
responses and body temperature during CW were not different on DO, D3, and D7 in the Control group. In
the experimental group, mean skin temperature was higher (P<0.05) during CW on D7 and D3, than DO.
Rectal temperature (Tre) was lower (P<0.05) and the ATre was greater (P<0.05) during the 6th hour of CW on
D3. Metabolic heat production during CW was similar among trials. These results suggest that prior
physical exercise may predispose a person to greater heat loss and to experience a larger decline in core
temperature when subsequently exposed to cold air. The combination of exercise intensity and duration
studied in these experiments did not fatigue the shivering response to cold exposure.

Paper presented at the RTO HFM Symposium on "Blowing Hot and Cold: Protecting Against Climatic Extremes
held in Dresden, Germany, 8-10 October 2001, and published in RTO-MP-076.
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Introduction

Exercise has been conjectured to increase an individual's risk of hypothermia during cold exposure
(2, 15). However, experimental and clinical evidence for this is largely anecdotal. Over 30 years ago, Pugh
(7, 8) concluded that exercise-induced fatigue was an etiologic factor predisposing hikers, climbers, and
outdoorsman to hypothermia, but he provided no data demonstrating this belief with a physiological
mechanism for this predisposition. Recently, Thompson and Hayward (12) suggested that exercise during
cold-wet exposure may fatigue shivering thermogenesis, but their findings did not definitively support their
speculation. Others (4, 16) have reported that exercise performed before subsequent cold water immersion
exacerbates the fall in core temperature, but these results were inconclusive because pre-immersion core
temperature differed between the experiments (4), or a cross-sectional methodology was employed (16).
Furthermore, because water has such a high thermal conductivity, peripheral heat loss during cold water
immersion may be too pronounced for exercise effects on thermal balance and thermoregulatory effector
responses to be detected.

Exercise could increase the risk of hypothermia during subsequent cold exposure due to several
reasons. First, exercise might mediate "thermoregulatory fatigue" which would blunt shivering responses
and reduce vasoconstriction during subsequent cold exposure. For example, we (17) have observed that a
prolonged period of physical exertion coupled with sleep deprivation and negative energy balance resulted in
a lowered threshold for shivering despite normal plasma glucose concentrations. Those findings, however,
did not allow isolation of the effects of previous exercise from sleep deprivation and negative energy
balance. Second, cold exposure immediately after performing leg exercise might result in accentuated heat
loss from "thermoregulatory lag". Thermoregulatory responses are aimed at facilitating heat dissipation
during exercise in temperate conditions (10) and subsequent cold exposure might mediate a "lag" in
switching from heat loss to conservation. Evidence for this might include increased heat loss from areas of
active cutaneous vasodilation such as the torso and arms. Third, exercise might mediate greater heat loss
during subsequent cold exposure due to "heat redistribution" to active limbs. During exercise, active skeletal
muscle increases perfusion and perfusion can remain elevated for extended durations (11) facilitating
regional heat loss over these active limbs during exercise (9). Evidence for a "heat redistribution" might
include greater regional heat loss over the active limbs (legs) during subsequent cold exposure.

These studies examined whether exercise impairs the body's capability to maintain thermal balance
during subsequent cold exposure. It was hypothesized that a greater decrease in core temperature (Tcore)
would occur during cold exposure following either acute (Study 1) or chronic (Study 2) exercise compared to
cold exposure preceded by resting. We hypothesized that exercise would mediate some combination of
"thermoregulatory fatigue", "thermoregulatory lag", and/or "heat redistribution" which would be manifested
as a more rapid cooling rate during cold exposure.

Methods

Study 1

Subjects. Ten, healthy men volunteered to participate in this study as test subjects. Physical
characteristics were age, 24.7 ± 1.7 (SE) yr; height, 176.8 ±- 2.1 cm; mass, 78.1 ± 3.5 kg; body surface
area, 1.93 ± 0.05 M2 ; peak oxygen uptake (VO2peak), 46.1 ± 1.3 ml-kg-l-min-1 ; percent body fat, 15.0 ±- 1.2 %;
and skinfold thickness, 3.2 ±- 0.4 mm.

Preliminary testing. Body composition was measured using dual energy x-ray absorbitometry
(Model DPX-L, Lunar Corp., Madison, WI). All subjects completed an incremental cycle ergometer test for
determination of V0 2 peak. Briefly, subjects pedaled at 70 watts for 2 min with the resistance increased by 35
watts every 2 minutes until the subject was exhausted and could no longer maintain the exercise intensity.

Experimental Design. Subjects completed two experimental trials, on separate days, spaced by one
week. Subjects refrained from smoking, taking medication, and exercising 12 hours before any testing
session. Each trial consisted of a standardized cold air test (CAT) preceded by one of two manipulations: A)
exercise (EX), or B) passive heating (HEAT). The EX trial consisted of 60 min semi-recumbent cycle
ergometer exercise (EX), immersed to shoulder level in a water immersion pool at 35.0 ± 0.1°C followed by
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the CAT. The immersion pool holds - 36,000 liters and is controlled within 0.5°C by a temperature control
system. Mean exercise intensity was 55.4 ± 2.3 % V0 2 peak for EX. The HEAT trial consisted of sitting in
the immersion pool at 38.2 ± 0.0°C until rectal temperature rose to match that at the completion of EX
followed by the CAT. This approach precluded using a randomized design and the HEAT trial always
followed the EX trial. Immediately following EX or HEAT, subjects toweled off, changed into dry shorts
and socks, and were taken to the anteroom of the cold chamber for baseline measurements. This took
approximately 20 minutes. Five minutes of baseline data (body temperatures, HR, metabolic rate) were
collected outside the cold air chamber (22.8 ± 0.8°C) while the subject sat quietly, and then they rose and
walked into the cold air chamber (4.6 ± 0.1°C) and reclined for up to 120 min in a nylon mesh lounge chair.
While reclining, the subjects sat quietly and were not allowed to employ behavioral thermoregulation. The
trials were all conducted at the same time of day to control for the potential influence of circadian
rhythmicity.

Measurements and Calculations. Rectal temperature (Tre) was measured by a thermistor inserted 10
cm past the anal sphincter. Integrated heat flow and skin temperature disks (Concept Enginnering, Old
Saybrook, CT) were secured at 5 (in water) and 8 (CAT) sites (right side of the body). Mean weighted skin
temperature (Tsk) during water immersion was calculated as follows: Tsk = 0. 2 8 Tsubscapular + 0.1 4 Tforearm +

0.0 8 Ttriceps + 0. 2 2 Talf + 0. 2 8 Tiaterai thigh. During CAT, Tsk (°C) was calculated as follows: 0.06Tfoot + 0.1 7 Talf
+ 0. 2 8 TIateral thigh + 0. 14 Tchest + 0.0 7 Ttricep + 0.0 7 Tforearm + 0. 14 Tsubscapular + 0.0 7 Thand. Mean weighted heat flow
(HF, W-m-2) was calculated as follows: 0.06HFfoot + 0.17HFcalf + 0. 2 8fF-iateral thigh + 0.14HFchest + 0.07HFtricep
+ 0.0 7HFf1aorerm + 0.1 4HF1subscapular + 0.07HFhand. Tissue insulation was calculated as follows: IT =(Tre-Tsk)/HF
(10). Mean body temperature (Tb) was calculated as follows: pre-CAT, Tb = 0.8Tre + 0.2 Tsk, during CAT,
Tb = 0. 6 7 Tre + 0.33 TAk (26). Temperature and heat flow measurements were made continuously using an
automated data acquisition system.

Oxygen uptake (V0 2) was measured using an automated metabolic measurement and analysis
system (Model 2900, Sensormedics, Yorba Linda, CA) at minutes 0 (baseline) and 30 during the water
immersion. During CAT, V0 2 was measured at minutes 0 (baseline), 15, 35, 55, 75, 95, and 115. Metabolic
heat production (M, W-m- 2) was estimated from the V0 2 and respiratory exchange ratio (RER) using the
following equation: M = (0.23[RER] + 0.77) • (5.873)(V 02) ° (60/AD) where AD is body surface area (M2).

Blood was drawn from an indwelling venous catheter (antecubital) in the left arm before beginning
the CAT (min 0) and at minutes 15, 30, 60, 90, and 120 during CAT. Catheter patency was maintained
between blood draws by injecting heparinized saline into the catheter. Blood samples were analyzed to
determine plasma glucose concentration using an auto analyzer (Model 2300, Yellow Springs Instrument,
Inc.) to ensure that subjects maintained euglycemia. Plasma norepinephrine (NE) was determined by gas
chromatography.

Statistical Analyses. Data were analyzed using a 2-way repeated measures analysis of variance.
When significant F-ratios were calculated, paired comparisons were made post-hoc using Newman-Keuls
tests. The slope and threshold of each individuals Tb vs. A M relationship was determined by least squares
linear regression. Paired t-tests were used to determine if differences in slope or intercept data existed
between EX and HEAT for Tb vs. AM. Data are reported as means + S.E. Significance was accepted at p <
0.05.

Study 2

Subjects. Thirteen subjects participated in this study which was approved by the appropriate
Institutional Review Boards. The subjects volunteered after being fully informed of the requirements and
risks associated with participating in the research. Ten subjects performed exhaustive exercise (EX group)
between cold-wet exposures whereas three volunteers did not (Control group). Subject characteristics were
age, 24 ± 1 yr; height, 177 + 2 cm; weight, 82.8 ± 3.6 kg; % fat, 16.4 + 1.9%; VO2peak, 56.0 ± 1.8 mlbkg-1.
min-'; and body surface area 1.99 ± 0.05 m2 for the EX group and age, 28 ± 4 yr; height, 170 + 5 cm; weight,
80.5 ± 8.0 kg; % fat, 20.0 + 2.0%; N/O2peak, 53.6 ± 3.2 ml'kg-l'min-1; and body surface area 1.91 ± 0.10 m 2 for
the Control group.
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Preliminary testing. Body composition was measured using dual energy x-ray absorbitometry
(Model DPX-L, Lunar Corp., Madison, WI). An incremental treadmill test was used for determination of
peak oxygen uptake (VO2peak). Briefly, subjects ran at 9.7-11.3 km'hr1 at a 0% grade for 1.5 min.
Thereafter, the grade increased 2% every 1.5 minutes until the subject became exhausted. The one repetition
maximum (1-RM) of the upright row, chest press, latissimus dorsi pull-down, and biceps curl was
determined for members of the exhaustive exercise group but not the control group. Subjects completed a
series of no more than 6, single repetitions as resistance was increased incrementally until the subject could
no longer lift the weight correctly. Approximately one minute elapsed between successive 1 -RM attempts.

Experimental design. The subjects' body composition, peak oxygen uptake (VO2peak), and muscle
strength were assessed before beginning the experiment. The subjects then completed three experimental
cold, wet walks (CW) from - 1330-2000 hours when they were well-rested before beginning the heavy
exercise regimen (DO), and after 3 (D3) and 7 (D7) consecutive days of exhaustive exercise (EX group) or at
the same between trial intervals for the Control group. The purpose of including the Control group was to
assess the possibility that three, repeated exposures to cold completed over a one week period would induce
habituation or acclimatization to cold, separate from effects of the exhaustive exercise, although their small
sample number limits statistical inferences. The Control group refrained from exercising for 24 hours before
each CW. On D3 and D7, - 2.5 hours (140-170 min) elapsed between the end of the last daily exercise
session and the subsequent CW. The CW was modified from an experimental protocol described by Weller
et al. (14). Briefly, CW consisted of 360-min intermittent treadmill walking (six cycles of 10-min standing
rest in the rain, 45-min walking, 5-min for transition between rest and walking) in an environmental chamber
with air temperature set at 5°C. During the rain, the subjects stood still for 10 min (except for the initial cycle
of rain, during which they sat) and were wetted at a rate of 5.41 cm'hr-1 under a sprinkler designed to
simulate rainfall. Following each rest/rain period, subjects walked at 1.34 m's-1 (3 mph) at 0% grade on a
motor-driven treadmill. Wind velocity was 1.1 m's-1 (2.5 mph) during the 10-min rain and 5.4 m's-1 (12
mph) while walking. The CW for each subject was terminated if the rectal temperature was < 35°C, or if the
subject asked to stop.

Each subject consumed one US Army Meal-Ready-to-Eat (1260 ± 29 kcals) 1.5 hr before each CW.
During the rest/rain portion of each cycle (not including the first cycle), 250 ml of a commercial
carbohydrate drink (Gatorade®, Quaker Oats, Barrington, IL) was consumed to help subjects maintain
normal plasma glucose concentrations throughout CW. Before beginning CW, baseline measurements of
temperature, oxygen uptake and thermal sensation were obtained in an anteroom outside the environmental
chamber (22°C) for 20-min. Volunteers were tested in groups of 3-4 people. Clothing for each subject
consisted of a US Army Battle Dress Uniform (cotton shirt, cotton-nylon jacket, cotton-nylon pants, cotton-
nylon hat with ear flaps, socks, gloves, leather boots; clo = -1. 1). Additionally, during the rain, the subjects
wore a 100% nylon rain hat and nylon boot gaiters. The clo value, following the rain, for a completely
wetted uniform was 0.75 clo.

The exhaustive exercise routine for days 1-7 consisted of the following activities each day: running
& sprinting (hiking substituted on D3 & D7), weightlifting, ergometry, and an anaerobic power test.
Subjects ran 4.8 km at their personal best and sprinted 800 m three consecutive times. Weightlifting
consisted of one set of repetitions to exhaustion on four different resistance exercises (row, chest press, lat
pull-down, biceps curl), each at 70% of the one repetition maximum. Aerobic exercise consisted of four
consecutive 20 min sets of stair-stepping (Stepmill, Stairmaster Corp., Seattle, WA), rowing (Concept II,
Concept II Inc., Morrisville, VT), treadmill walking (substituted for rowing on D3 and D7), upright cycling
(Model HRT-2000A, Preference), and semi-recumbent cycling (Model HRT-2000R, Preference), all at ~
65% VO2peak. This percentage was estimated from the V0 2-HR relationship derived during the determination
of V•Opeak. A 5-min rest was allowed between bouts. One 30-sec anaerobic test (Wingate test) was
performed on a cycle ergometer (CardioO2, Ergometrix Corp., Minneapolis, MN) and concluded each
exhaustive exercise session. Subjects' pedaled as fast as they could for 30-sec with resistance set at 5.8 J'rev
1'kg-1. Hiking (substituted for running and sprinting on D3 and D7) consisted of a 9.7 km hike over varied
terrain at -6.4 km'hr1 , carrying a 9.1 kg backpack. Exhaustive exercise was performed from 0900-1300 h
(DI, D2, D5, D6) or 0700-1100 h (D3, D4, D7). Subjects were provided a carbohydrate-electrolyte beverage
to drink ad libitum during the exhaustive exercise regimen.
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Measurements and calculations. Rectal temperature (Tre) was measured every minute using a
thermistor inserted 10 cm past the anal sphincter. Skin temperature (Tsk) was measured using thermistor disk
sensors (Concept Engineering, Old Saybrook, CT) attached on the skin surface at five sites (ventral aspect of
forearm, tricep, subscapula, anterior thigh, and calf). Mean weighted skin temperature (Tsk) was calculated
as: Tsk = 0. 2 8 Tsubscapular + 0.1 4 Tforearm + 0.0 8 Ttriceps + 0. 2 2 Tcalf + 0. 2 8 Tthigh. Heart rate (HR) was measured near
the end of each walking portion of the CW from three chest electrodes (CM-5 configuration) and
radiotelemetered to an oscilloscope-cardiotachometer (Hewlett-Packard). Oxygen uptake (V0 2), carbon
dioxide output, and minute ventilation were measured by open-circuit spirometry before CW (sitting) and
during the 2 5 -2 7 th min of walking during each exercise portion of the rest-walking cycle. Additionally, in
four subjects from the EX group and the three Control group subjects, expired air was collected immediately
following the rain portion of each cycle to evaluate shivering thermogenesis during rest. Percent oxygen
(Applied Electrochemistry S-3A), carbon dioxide (Beckman LB-2), and volume (Tissot Spirometer, Collins)
were measured from a 1.5-min collection of the subjects' expired air into a Douglas Bag. Metabolic heat
production (MI, W.m-2) was estimated from the V0 2 and respiratory exchange ratio (RER) using the
following equation: N4 = (0.23[RER] + 0.77) • (5.873)(VO 2) • (60/AD) where AD is body surface area (M2).

Whole body insulation (I) was calculated using the following equation: I = (Tre-Tsk)/N/. Self-reported dietary
and sleep records were kept each day beginning the day before the first CW and continuing through day 7.

Blood samples for determination of serum glucose and plasma catecholamines were collected after
the subject sat quietly for 20 min on DO, D3, and D7 at 0700-h, before CW (~1315-h, glucose only), and 20-
min following CW (post-CW) from an indwelling cannula in an antecubital vein. Plasma and serum were
separated using a refrigerated centrifuge. Serum glucose was measured on an auto-analyzer (Model 2300,
Yellow Springs Instrument, Inc., Yellow Springs, OH). Plasma catecholamine concentrations were
measured with mass spectroscopy-gas chromatography. Plasma volume changes were determined from
hemoglobin and hematocrit measurements.

Statistical analyses. Data were analyzed using a 2-factor (time X experimental trial) repeated
measures analysis of variance. When significant F-ratios were calculated, paired comparisons were made
post-hoc using Fisher's least significant difference test. Because exposure duration varied for each subject
among the 3 trials, statistical analysis was performed on complete data sets for all three trials. For the EX
group, data from 10 subjects were analyzed from 0-180 min and data from 4 subjects were analyzed for 360
min. For the Control group, data from the 3 subjects were analyzed for 240 min. There were missing data
points at various points due to difficulty drawing blood samples from subjects during cold exposure.
Therefore, catecholamine data were analyzed with t-tests between DO and D3 and between DO and D7.
Unless otherwise specified, the level of significance for differences reported is P < 0.05. Data are presented
as mean ± S.E.

Results

Study 1
Water Immersion. All subjects completed 60 min of cycling during EX. The mean immersion time

required during HEAT to match the Tre rise observed during EX was 53.4 ± 5.0 min. The mean Tre at the end
of the immersion periods were 38.19 ± 0.14'C and 38.08 ± 0.10°C, during EX and HEAT, respectively (P >
0.05). The average V0 2 (L-min-1) during immersions were 1.97 ± 0.12 and 0.34 ± 0.02, for EX and HEAT,
respectively (P < 0.05). For EX, this V0 2 corresponded to 55.4 ± 2.3% of the measured V0 2 peak. Final heart
rates (beats-min-') during immersion were 149.3 ± 6.1 and 102.1 ± 3. 1, for EX and HEAT, respectively (P <
0.05). Weight loss (kg) from sweat was 1.07 ± 0.15 and 1.06 ± 0.18 during EX and HEAT, respectively (P >
0.05).

Rectal temperature (CAT). During the transition from the immersion pool to the cold air chamber,
Tre fell during HEAT. Therefore, Tre at min 0 was slightly, but significantly higher (0.14 0C, P < 0.05) in EX
vs. HEAT (Figure 1). By the 1 0 th min of cold air exposure, differences between trials were no longer
apparent. However, by the 4 0 th min of CAT, Tre had fallen lower (P < 0.05) during EX compared to HEAT
and the difference between trials grew larger as exposure continued to the 1 2 0 th min. The cooling rate (°C-h-
1) from min 10 to the end of the exposure was faster (P < 0.05) for EX (-0.64 ± 0.07) than HEAT (-0.57 +
0.04).
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Figure 1. Rectal temperature vs. time for Exercise (0, EX) and Passive Heating (0, HEAT) experiments during
cold air exposure. Values are mean ± SE. * Exercise significantly different than Control at specified times.
Post-immersion denotes temperature at the end of the water immersion.

Heatflow (CAT). HF was higher (P < 0.05) during CAT in EX vs. HEAT (Figure 2). Also IT during
CAT was lower ( P < 0.05) in EX compared to HEAT (Figure 2).
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Figure 2. Mean weighted heat flow (A) and insulation (B) vs. time for Exercise (0, EX) and Passive Heating
(0, HEAT) experiments during cold air exposure. Values are mean ± SE. #, main effect, Exercise significantly
different than Control, P<0.05.
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Individual site HF and IT are presented in Figure 3. Calf HF and IT demonstrated a significantly (P < 0.05)
greater HF and lower IT between EX and HEAT. Hand HF also tended (p = 0.06) to be higher in EX.
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Figure 3. Individual heat flow (A) and insulation (B) for the 8 sites measured. Calf heat flow was higher (P <
0.05) and insulation lower (P < 0.05) during EX. Values are mean ± SE.

Metabolic heat production & heat debt (CAT). M did not differ between EX and HEAT at any time
throughout CAT. The final M at min 115 was 146.6 ± 6.5 and 136.1 ± 3.6 W-m-2 for EX and HEAT,
respectively. The relationships (slope and intercept) between mean body temperature (Tb) and the
corresponding increment in metabolic heat production over pre-CAT values (A M, a measure of shivering
thermogenesis) did not differ between trials. Slopes (W-m-2°Ci) were -33.8 ± 3.0 and -32.7 ± 3.4 for EX
and HEAT, respectively. Intercepts (°C) were 34.5 ± 0.2 and 34.3 ± 0.1 for EX and HEAT, respectively.

Plasma glucose, norepinephrine (CAT). Plasma glucose concentrations were not affected by CAT in
either trial and there were no differences between trials. Glucose values averaged between 4-6 mmol-L-1

throughout CAT. Plasma norepinephrine concentrations increased from 2.5 nmol-L' to 10-15 nmol-L-1

during cold air exposure, with no differences between EX and HEAT.

Study 2
Exercise Duration, Cold Tolerance, Food and Sleep Diaries.

Six subjects (4 in EX group; 2 in Control group) completed 360 min in all 3 cold exposure trials.
The other 6 subjects in the EX group completed a minimum of 180 min in all three trials and the average
time completed for the trials in these subjects was 305 + 24, 281 + 23, and 287 ± 25 minutes for DO, D3, and
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D7, respectively. The third subject in the Control group completed 240 min in all three trials. One subject
sustained a foot injury on Day 5 and did not participate in the Day 7 cold exposure. The main reasons for not
completing all 6 hours during CW included hip flexor cramping and/or leg pain and overall body stiffness.
Mean daily sleep reported ranged from 6.6-7.8 hours per night for the duration of the study. Mean body
mass (kg), for all subjects, at the beginning of DO, D3, and D7, respectively, was 81.6 + 3.2, 81.6 + 3.2, and
81.3 ± 3.1. Mean daily caloric intake reported throughout the experiment was 2656 ± 94 kcal'day-1 .

Temperature Regulation Responses (EX Group).
Rectal temperature. Rectal temperature was significantly higher during the first 2 hours (n = 10, F =

3.67, P < 0.001) and significantly lower in the 6th hour of cold exposure (n = 4, F = 2.02, P < 0.001) on D3
compared to DO (Figure 4). Tre was also significantly higher in the 2nd and 3 rd hours (n = 10) of cold
exposure on D7, compared to DO, with no difference between these trials for the last three hours (n = 4) of
exposure. The change in Tre, relative to the initial Tre at time 0 was significantly greater (F = 3.68, P < 0.001)
during the 6 th hour of cold exposure on D3 compared to DO.

n=10 n=4

37.8

& 37.6

o #

S37.4
CL
E

09S37.2

37.0 --e-- DO
--- D3

A D7

36.8 - I..

0 60 120 180 240 300 360

Time (min)

Figure. 4. Rectal temperature vs. time during cold exposure before (DO, o), after 3 days (D3, 0) and after 7 days
(D7, A) of physical exertion. Data from min 0 to min 180 are from 10 subjects and data from min 190 to min 360
are from 4 subjects. *, D3 significantly (P < 0.05) different than DO; t, D3 and D7 significantly (P < 0.05)
different than DO; #, D3 significantly (P < 0.05) different than DO and D7.

Skin temperature. Mean skin temperatures were significantly higher (F = 3.17, P < 0.001) on D7 and
D3, vs. DO, from the Ist to 6 th hour of cold exposure (Fig. 5). The change in mean skin temperature (ATsk, a
quantifier of the magnitude of vasoconstrictor response) was significantly less (F = 3.17, P < 0.001) in the 2 nd

and 3 rd hours (n = 10) on D7, vs. DO and D3. The ATsk for the 3 rd through 6 th hours was significantly less on
both D7 and D3, compared to DO. Forearm skin temperature changes during the first 3 hours of cold
exposure demonstrated a significantly smaller fall (F = 1.63, P < 0.05) in forearm skin temperature on D3
and D7, vs. DO, and the fall in calf skin temperature during the same time period was also significantly less
(F = 2.35, P < 0.001) on D7, vs. DO and D3.
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Figure. 5. Mean skin temperature vs. time during cold exposure before (DO, o), after 3 days (D3, 0) and after 7
days (D7, A) of physical exertion. Data from min 0 to min 180 are from 10 subjects and data from min 190 to
min 360 are from 4 subjects. t, D3 and D7 significantly (P < 0.05) different than DO; #, D3 significantly (P <
0.05) different than DO and D7; $, D7 significantly (P < 0.05) different than DO.

Metabolic heat production, insulation, heart rate, thermal sensation. Metabolic heat production
increased from rest during all 3 cold exposures with no differences among trial days. A higher metabolic
heat production was observed during the rest/rain periods through the 3 rd rain period on D3, vs. DO and D7.
Whole body insulation was less (F = 11.62, P < 0.01) on D3 and D7, vs. DO, during the last three hours of
cold exposure. Forearm insulation was lower (F = 8.33, P < 0.01) on D3 and D7, compared to DO, and there
were no differences among days for calf insulation. Heart rate was significantly higher (main effect, F =
4.52) on D3 compared to DO during the first 3 hours of cold exposure. Heart rate was similar before and
during the first 3 hours of exercise-cold stress. Thermal sensation was similar among trial days during cold
exposure.

Blood Responses.
Serum glucose concentrations averaged between 4.5-6 mmol'L-1 throughout the study, with no

significant differences between groups, trials or measurement times. No hypoglycemia (< 2.7 mmol'L-') was
observed. Plasma volume expanded on D3, relative to DO, 15.8 ± 7.1 % and on D7, relative to DO, 15.2 ±
5.4%. Plasma catecholamine concentrations measured at 0700-h (basal) and after cold exposure are
presented in Fig. 6. Catecholamine concentrations at baseline (0700-h) were corrected for plasma volume
changes. Plasma norepinephrine was significantly higher at 0700-h on D3 and D7, compared to DO. Plasma
norepinephrine increased significantly (F = 11.61, P < 0.02) during all three CW, but there were no
differences in post-exposure NE concentration among trials. Cold exposure elicited a 3 to 4 fold increase in
plasma epinephrine; however there were no differences among trials at 0700-h or post-CW (Fig. 6).
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Figure. 6. Plasma norepinephrine (A) and epinephrine (B) concentrations at 0700-h (baseline) and after cold
exposure (Post-CW) before (DO), after 3 days (D3) and after 7 days (D7) of exhaustive exercise. Number of
subjects for each timepoint for norepinephrine and epinephrine is indicated in parentheses. t, D3 and D7
significantly different (P < 0.05) than DO.

Discussion

The primary finding from these studies was that when individuals exercised before cold exposure,
they cooled faster than when rest preceded cold exposure. However, the data are not consistent with our
hypothesis that exercise would lead to "thermoregulatory fatigue" of the shivering response to cold. We had
based that hypothesis on our own finding (1) and those reported by others (7, 8, 12) suggesting that shivering
can become fatigued. In this study, the shivering response to cold was the same whether or not acute or
chronic exercise preceded the cold exposure. In contrast, mean weighted heat flow and skin temperature
measurements were higher and, concomitantly, tissue insulation less during cold exposure following
exercise. Collectively, these observations indicate that, following either acute or chronic exercise, greater
peripheral heat loss from the skin ("thermoregulatory lag" and/or "heat redistribution") was responsible for
the greater cooling rates during cold exposure.

Several factors might explain why peripheral heat loss and mean skin temperatures during cold
exposure were greater when preceded by acute or chronic exercise. One possibility is that post-exercise
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hyperemia in the leg muscles persists during cold exposure, increasing convective heat transfer from the
body's core to the periphery overlying active muscle relative to cold exposure preceded by rest ("heat
redistribution"). The higher heat flow and lower insulation in the calf during cold exposure following
exercise in Study 1, compared to passive heating, are consistent with this explanation. However, the higher
skin temperatures observed in Study 2 during cold exposures completed after seven days of exhaustive
exercise do not likely represent the "heat redistribution" mechanism. In Study 1, resting cold exposures were
completed shortly after (20 min) exercise, so effects of a persistent post-exercise hyperemia would be
pronounced compared to the other trial in which resting cold exposures were not shortly preceded by
exercise. In Study 2, subjects performed standardized exercise of the same intensity during all the cold
exposures, so muscle blood flow, and thus heat redistribution, should have been constant among trials. Thus,
we believe that our observations indicate that fatigue induced by exhaustive exercise may indeed blunt the
vasoconstrictor response during cold exposure, although the possibility that post-exercise hyperemia
contributes to higher skin temperatures cannot be ruled out.

Another possibility is that the prior exercise blunted the sympathetic drive for vasoconstriction
normally elicited in response to cold ('thermoregulatory lag"). However, in Study 1, the norepinephrine
response to cold was the same whether cold exposure was preceded by exercise or passive heating. In
contrast, following chronic exercise (Study 2), the blunting of the vasoconstrictor response to cold
subsequent to severe physical exertion may be related to concomitant elevations in basal circulating
norepinephrine levels. Opstad (5) has observed higher circulating norepinephrine levels in soldiers following
multiple days of exhaustive exercise coupled with sleep deprivation, and Young et al. (17) reported similar
effects in soldiers who had just completed an 8-week training course that entailed heavy physical exertion
throughout coupled with sleep deprivation and negative energy balance. In this study, we observed that basal
norepinephrine levels were elevated in our subjects after three and seven consecutive days of exercise.
Despite the elevation of basal norepinephrine concentrations, cold exposure elicited similar sympathetic
activation during all three cold exposures, as evidenced by the increment in norepinephrine concentrations
observed by the end of each of the cold exposures, the magnitude of which did not differ among trials.
Stimulation of adrenergic receptors mediates cold-induced vasoconstriction. Since the increment in
norepinephrine was similar during all three cold exposure trials, a blunted sympathetic nervous stimulus does
not appear to account for the less pronounced vasoconstrictor response. A diminished sensitivity of the
adrenergic receptors remains as a viable mechanism to explain blunting of cold-induced vasoconstriction
observed in the present experiments. Chronically elevated norepinephrine levels have been shown to
decrease adrenergic receptor sensitivity in animal models (13) and similar effects have been suggested to
develop in humans in whom circulating norepinephrine levels remain chronically elevated (5).

The absence of an exercise effect on shivering thermogenesis in both experiments suggests that this
response to cold is not easily fatiguable. We observed no difference in the Tb vs. AM relationship between
trials suggesting that the differences in Tre between trials were not due to a change in central control of
shivering thermogenesis. In Study 1, perhaps the exercise intensity and duration were not sufficient to
fatigue the shivering mechanism, which is a relatively low intensity activity, at least compared to exercise.
In Pugh's case report of the Four Inn's Walk (7), the participants were exercising up to 20-h in cold-wet
conditions. Likewise, the subject in Thompson and Hayward's study (12) who developed shivering fatigue
was exercising for 4-h in severe cold-wet conditions. We modeled this exposure in Study 2 and still did not
observe shivering fatigue. Another possibility is that shivering impairments observed in these earlier studies
may not reflect fatigue, but rather hypoglycemia, which is known to impair shivering (3, 6). Plasma glucose
levels were not measured in those previous studies (7, 12). In our studies, plasma glucose concentrations
remained normal throughout cold exposure. It may be that exhaustive exercise must be coupled with other
factors such as sleep deprivation or caloric deprivation before this thermoregulatory effector response is
blunted.

Many subjects, during the chronic exercise experiment, were unable to continue walking for 6 hours
in the cold-wet conditions due to muscle cramping (n = 4), leg and knee pain (n = 2), and general muscle
stiffness (n = 1). If these volunteers were subjected to wet-cold conditions in a scenario where they could not
escape the cold after discontinuing exercise, shivering alone would be insufficient to offset heat loss, and
core temperature would fall. Weller et al. (14) and Thompson and Hayward (12) demonstrate this elegantly
in their studies when exercise intensity decreases during prolonged cold-wet exposure. Thus, physical
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exertion affects the ability to maintain normal body temperatures during cold exposure via both direct (i.e.
impairing thermoregulatory response-vasoconstriction) and indirect (impairing capacity to increase metabolic
heat production) mechanisms.

In conclusion, this series of studies examined the effects of acute (one hour) and multiple days of
exhaustive exercise on temperature regulation during prolonged cold exposure. Our findings demonstrate
that following either type of physical exertion, the vasoconstrictor response to cold exposure is blunted,
perhaps due to a fatigue-related mechanism. In contrast, shivering thermogenesis appears less sensitive to
the effects of previous physical exertion. Increases in peripheral heat loss during prolonged cold-wet
exposure associated with impaired vasoconstrictor responses to cold would eventually exacerbate the fall in
core temperature, if metabolic heat production is unchanged, thereby increasing susceptibility to
hypothermia. These findings have implications for individuals, such as hikers, military personnel, and
outdoor workers, who are exposed to cold-wet environments and have been engaged in heavy, fatiguing
exercise.

Disclaimer
The views, opinions and/or findings in this report are those of the authors and should not be

construed as official Department of the Army position, policy, or decision unless so designated by other
official designation. Human subjects participated in these studies after giving their free and informed
voluntary consent. Investigators adhered to AR 70-25 and USMRDC Regulation 70-25 on Use of
Volunteers in Research.
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